Legendre fractional differential equation and Legender fractional polynomials
نویسندگان
چکیده
منابع مشابه
Brenstien polynomials and its application to fractional differential equation
The paper is devoted to the study of Brenstien Polynomials and development of some new operational matrices of fractional order integrations and derivatives. The operational matrices are used to convert fractional order differential equations to systems of algebraic equations. A simple scheme yielding accurate approximate solutions of the couple systems for fractional differential equations is ...
متن کاملbrenstien polynomials and its application to fractional differential equation
the paper is devoted to the study of brenstien polynomials and development of some new operational matrices of fractional order integrations and derivatives. the operational matrices are used to convert fractional order differential equations to systems of algebraic equations. a simple scheme yielding accurate approximate solutions of the couple systems for fractional differential equations is ...
متن کاملLegendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied Mathematical Research
سال: 2014
ISSN: 2227-4324
DOI: 10.14419/ijamr.v3i3.2747